
XML-Driven Bitstream Extraction Along the Temporal Axis of
SMPTE’s Video Codec 1

W. De Neve1, D. De Schrijver1, D. Van Deursen1, and R. Van de Walle2

1 Ghent University - IBBT, ELIS, Multimedia Lab
Gaston Crommenlaan 8 bus 201, B-9050 Ledeberg-Ghent, Belgium

2 Ghent University - IBBT - IMEC, ELIS, Multimedia Lab
Gaston Crommenlaan 8 bus 201, B-9050 Ledeberg-Ghent, Belgium

Abstract The MPEG-21 Multimedia Framework sets
out to transparently deliver digital media content to any
device over any network. One of the tools that underlies
this vision is the MPEG-21 Bitstream Syntax Descrip-
tion Language (MPEG-21 BSDL). This language sits at
the core of an XML-driven architecture for media con-
tent customization, hereby allowing to tackle the huge
diversity in the present-day terminal and network tech-
nology. In this paper, a discussion is provided on how
Video Codec 1 (VC-1) encoded bitstreams can be fit-
ted in such an adaptation framework. More precisely,
we chart a few different strategies to automatically cre-
ate XML-based descriptions of the high-level structure
of VC-1 compliant bitstreams in order to steer a desired
adaptation along their temporal axis. Some performance
measurements in terms of computational times, file sizes,
and memory consumption are presented as well.

1 Introduction

In August 2005, Video Codec 1 (VC-1) reached the Final
Committee Draft (FCD) status with the C24 Technol-
ogy Committee of the Society of Motion Picture and
Television Engineers (SMPTE), in which it is officially
referenced as SMPTE standard 421M [1]. This specifica-
tion for digital video coding not only sits at the core of
the Windows Media Series (Windows Media Video 9 is
Microsoft’s implementation of VC-1 [2]), but it is also in-
cluded as a mandatory video compression format for the
next-generation of High-Definition DVDs by both the
Blu-Ray Disc Association and the DVD Forum (together
with H.262/MPEG-2 Video and H.264/AVC). Hence,
there is a good chance that VC-1 will be used in diverse
usage environments, thus making it relevant to gain an
insight into a framework that allows to realize an efficient
and transparent customization of VC-1 compliant bit-
streams. In this research, an XML-driven architecture is
envisaged for the adaptation of VC-1 encoded bitstreams

original bitstream
[SA10098_30hz.vc1] BSDx

customized
BSD

customized bitstream
[SA10098_15hz.vc1]

BFlavor: enhanced
version of XFlavor

BintoBSD Parser filter(s)

BSDtoBin Parser

<bitstream
bs1:bitstreamURI=

“SA10098_30hz.vc1”>
<header>0-24</header>
<I>25-2637</I>
2663-746
<P>3410-1451</P>
4862-857
<P>5720-1241</P>

</bitstream>

<bitstream
bs1:bitstreamURI=

“SA10098_30hz.vc1”>
<header>0-24</header>
<I>25-2637</I>
<P>3410-1451</P>
<P>5720-1241</P>

</bitstream>

(iii)

(ii)

I B P B P

BintoBSD Parser with
context management

(i)

I
P

P

BSDb

bandwidth,
display size,
…

Fig. 1 XML-driven multimedia content adaptation

in the temporal domain in order to meet the constraints
of a certain usage environment (user characteristics and
preferences; device and network capabilities).

The outline of the paper is as follows. In Section 2,
background information is provided on the concepts of
XML-driven content adaptation. The main characteris-
tics of VC-1 are elaborated from a high-level point of
view in Section 3. Section 4 discusses some performance
results as obtained for the adaptation of VC-1 encoded
bitstreams. Finally, Section 5 concludes this paper.

2 XML-Driven Content Adaptation

Scalable coding is supposed to pave the way for sev-
eral new multimedia architectures. They should make it
possible to take into account the heterogeneity in the
current plethora of devices and networks. In order to
deliver scalable media in a diverse environment, it is im-
portant to be aware of the need of complementary logic
that makes it possible to exploit the scalability proper-
ties of the compressed bitstream. This process typically
involves the removal of certain data blocks and the mod-
ification of certain high-level syntax elements. One way
to realize this scenario is to rely on automatically gener-
ated XML-based descriptions that contain information
about the high-level structure of scalable bitstreams. In a
next step, these structural metadata can be transformed
to reflect a desired adaptation of a scalable bitstream,

2 W. De Neve, D. De Schrijver, D. Van Deursen, and R. Van de Walle

and can subsequently be used to automatically create an
adapted bitstream. Typically, only a limited knowledge
is required in order to generate an XML-based Bitstream
Structure Description (BSD). As such, a BSD acts as an
abstraction of the compressed bitstream.

During recent years, several languages have been de-
veloped that provide solutions for discovering the struc-
ture of a binary multimedia resource in order to generate
its XML description and for the generation of an adapted
multimedia resource using a transformed description by
relying on format-agnostic software. For instance, one
can think of the MPEG-21 Bitstream Syntax Description
Language (MPEG-21 BSDL) and the Formal Language
for Audio-Visual Object Representation, extended with
XML features (XFlavor). MPEG-21 BSDL allows to ex-
press the structure of a media resource by using a mod-
ification of the W3C XML Schema language; XFlavor
allows the same by relying on the principles of object-
oriented programming languages.

Both technologies can be used as stand-alone tools;
however, we have developed a joint approach to unify
the two solutions and to combine their strengths. More
precisely, the processing efficiency and flow-control flex-
ibility provided by XFlavor on the one hand, and the
ability to create compact BSDs by making use of MPEG-
21 BSDL on the other hand, can be considered key to
our motivation for the development of a novel bitstream
structure description language. The latter is called BFla-
vor (BSDL + XFlavor), and is the result of a modifica-
tion of XFlavor in order to be able to output BSDL com-
patible descriptions [3] [4]. To be more specific, BFlavor
allows to describe the structure of a media resource in a
C++-alike manner. It is subsequently possible to auto-
matically create a BS Schema, as well as a code base for
a parser that is able to generate a BSD that is compli-
ant with the BS Schema. This implies that the generated
BSDs can be further processed by the upstream tools in
a BSDL-based adaptation chain (such as a generic BSD-
toBin Parser; see further).

Figure 1 shows a high-level overview of a BSDL-
oriented content adaptation chain. It illustrates three
different approaches to create BSDL compliant BSDs:
(i) by using the BintoBSD Parser as available in the
MPEG-21 reference software package (version 1.2.1.);
(ii) by relying on an optimized BintoBSD Parser, hereby
using non-normative extensions to the BSDL Schema
language in order to intelligently guide the tool with the
context management (i.e., the in-memory representation
of the BSD) [5]; and finally, by making use of BFlavor.
In short, BFlavor and the extended version of MPEG-21
BSDL are two different approaches for circumventing the
inefficient performance behavior of the format-agnostic
BintoBSD Parser as available in the reference software.
This is due to the XPath evaluation mechanism, used
for getting access to context information (i.e., informa-
tion already retrieved from the bitstream). The behavior
in question will also be made clear by the performance

C:\CVS_Repositories\Berg\wdn_wiamis06\pdf\vc-1_generic_zero_byte_aware.xsd 10/26/05 17:40:05

©1998-2003 Altova GmbH http://www.xmlspy.com Page 1Registered to chacha (coca-cola)

bitstream

zero_byte

∞0..

encapsulated_bdu

∞0..

smpte:end_of_sequence

smpte:slice

smpte:frame

bdu_start_code

if_interlace_eq_1

ptype

padding

frame_payload

smpte:entry_point_header

smpte:sequence_header

Fig. 2 Simplified VC-1 bitstream structure overview

results that are presented in Section 4. Note that our ex-
tensions to BSDL are under consideration by the MPEG
consortium for standardization at the time of writing.

3 Under the Hood of VC-1

SMPTE’s VC-1 is an emerging standard for the coding
of digital consumer video: pictures are represented in
the YCbCr color space with 4:2:0 sampling, hereby using
eight bits per component. The specification defines three
profiles [1]. The Simple Profile targets low-rate internet
streaming and low-complexity applications such as play-
back of media on Personal Digital Assistants (PDAs).
The Main Profile aims at high-rate internet applications
such as TV/Video-On-Demand over IP. The Advanced
Profile (AP) focuses on broadcast applications, such as
digital TV, HD DVD for PC playback, or HDTV. It is
the only profile that supports interlaced content and the
use of slices. In addition, the bitstreams that are compli-
ant with this profile are self-contained; their decoding is
not dependent on information that has to be conveyed by
an external transport mechanism such as a file container.
The latter observation does not hold true for bitstreams
that are in line with the Simple and Main profile (due
to another design philosophy). Their decoding requires
Decoder Initialization Metadata (DIM). These metadata
items have to be made available to a decoder prior to the
start of the decoding process. For instance, the profile
and level used have to be communicated to a decoder by
external means in case of the Simple and Main profile,
while this information is readily available for a decoder
in case of AP compliant bitstreams. Hence, this explains
why we have chosen to only describe the high-level struc-
ture of bitstreams that are satisfying the constraints of
VC-1’s most complex profile.

A simplified overview of the high-level structure of a
VC-1 bitstream, in line with the possibilities of the AP,
is provided in Figure 2. A BSD for a particular VC-1
bitstream is given in Figure 3. It is clear that a VC-
1 bitstream consists of a number of Encapsulated Bit-
stream Data Units (EBDUs). Such units can carry com-
pressed picture data (frame and slice EBDUs), as well

XML-Driven Bitstream Extraction Along the Temporal Axis of SMPTE’s Video Codec 1 3

<bitstream bs1:bitstreamURI="./ SA10098_30hz.vc1">

<encapsulated_bdu >

<sequence_header >

<bdu_start_code >0000010F</bdu_start_code >

<profile >3</profile >

<level>2</level>

<!-- ... -->

</sequence_header >

</encapsulated_bdu >

<encapsulated_bdu >

<entry_point_header >

<bdu_start_code >0000010E</bdu_start_code >

<broken_link >0</broken_link >

<closed_entry >0</closed_entry >

<!-- ... -->

</entry_point_header >

</encapsulated_bdu >

<encapsulated_bdu >

<frame>

<bdu_start_code >0000010D</bdu_start_code >

<ptype>

<I>6</I>

</ptype >

<padding >0</padding >

<frame_payload >143 17753</frame_payload >

</frame >

</encapsulated_bdu >

<!-- ... -->

</bitstream >

Fig. 3 Simplified bitstream structure description

as header information (sequence and entry-point header
EBDUs). A sequence-level header contains parameters
that are used to decode a sequence of compressed pic-
tures. The entry-point header has two purposes. First,
it is used to signal a random access point: it guarantees
that subsequent pictures can be decoded. Second, it is
used to signal changes in the coding control parameters
that are enabled for a particular entry point segment.

Further, the VC-1 specification also defines five types
of pictures [1]. An I picture (intra coded picture) is coded
using information only from itself; all its macroblocks are
intra coded. A P picture is coded using motion compen-
sated prediction (MCP) from past reference pictures. It
can contain macroblocks that are inter or intra coded.
A B picture is coded using motion compensated predic-
tion from past and/or future reference pictures; mac-
roblocks can be inter or intra coded. A BI picture is a
B picture that only contains intra coded macroblocks.
It cannot be used for predicting other pictures (see fur-
ther). A Skipped picture is a P picture that is identical
to its reference picture; its reconstruction is equivalent to
copying the reference picture, implying that no further
data is transmitted (similar to pseudo-skipped pictures
in H.262/MPEG-2 Video and Non-coded Video Object
Planes (N-VOPs) in MPEG-4 Visual).

B pictures in VC-1 are not used as a reference for sub-
sequent pictures. They are placed outside the decoding
loop, allowing shortcuts to be taken during their decod-
ing without causing drift or long-term visual artifacts
(temporal scalability). Intra coded B pictures (BI pic-
tures) are also allowed in VC-1. They typically occur at
scene changes where it is more economical to code the
data as intra rather than P or B. This picture type is
distinguished from true I pictures by disallowing them
to be referenced by other pictures. This allows a decoder
(e.g., on a constrained device) to omit decoding them. It
also allows an encoder to choose a lower quality setting
or quantization step size to encode them. Finally, an AP

Table 1 Bitstream characteristics

#Pic. #EBDU #seq #entry #I #P #B #Skipped

150 1866 1 2 1 41 74 34
301 3531 1 2 1 79 150 71
450 5244 1 2 2 119 224 105
601 7084 1 2 2 155 300 144
750 8762 1 3 3 186 374 187
900 10498 1 3 3 225 449 223
1800 20994 1 6 6 450 898 446
2700 31490 1 8 9 675 1347 669
3600 41986 1 12 12 900 1796 892
4500 52482 1 15 15 1125 2245 1115
9000 104962 1 30 30 2250 4490 2230

bitstream offers a trivial form of spatial scalability: the
coded size in pixels can be changed at entry points. This
provides an encoder with the ability to alter the coded
picture size and thus the bit rate.

4 Simulation Results

Some performance measurements are presented in this
section. We are hereby targeting an off line scenario that
requires the elimination of B and Skipped pictures in a
bitstream that is compliant with VC-1’s AP. Other use
cases in the compressed temporal domain can be devised
as well, such as content summarization and scene selec-
tion. The measurements were done on a PC having an
Intel Pentium M 1.6 GHz CPU and 512 MB of system
memory at its disposal. SAXON8 was used in order to
apply Extensible Stylesheet Language Transformations
(XSLTs) to BSDs. They make it possible to eliminate
the B and Skipped pictures in the XML domain. An
artificial set of test bitstreams was generated (by us-
ing the BSD approach) from a representative confor-
mance test bitstream (SA10098.vc1; AP@L1; 6000kbps;
720x480; 30Hz; slice coding). This is due to the fact
that a software encoder, able to output elementary bit-
streams, was not available (yet) at the time of writing;
only a reference decoder and a set of conformance bit-
streams were at our disposal in the public domain. The
characteristics of the resulting bitstreams are summa-
rized in Table 1. Version 1.2.1 of the MPEG-21 BSDL
reference software was used. The memory consumption
was registered by relying on JProfiler 4.0.2.

The most important observations will now be put for-
ward. Table 2 contains the times needed to generate a
BSD by relying on the different approaches. BintoBSDr

denotes the tool as available in the reference software.
BintoBSDm refers to our modified version that supports
the BSDL extensions for achieving a usable adaptation
framework. PaU stands for Parse Unit (i.e., an EBDU).
It is clear that the BintoBSDr Parser cannot be used
in practice. It is characterized by a decreasing parsing
speed and an increasing memory consumption (see Ta-
ble 5), due to the fact that the entire BSD is kept in
memory in order to allow the evaluation of arbitrary
XPath expressions. The other strategies result in satis-
factory processing speeds (i.e., faster than real time).

4 W. De Neve, D. De Schrijver, D. Van Deursen, and R. Van de Walle

Table 2 BSD generation speeds

BintoBSDr BintoBSDm BFl. XFl.
#Pic. (PaU/s) (PaU/s) (PaU/s) (PaU/s)

150 24.4 186.9 1304.6 162.5
301 15.7 200.6 1411.3 163.7
450 11.6 207.9 1530.4 181.8
601 9.0 212.3 1613.7 189.5
750 7.5 212.1 1615.7 174.2
900 6.4 214.4 1629.0 169.0
1800 3.3 215.1 1658.5 153.3
2700 1.3 215.2 1656.4 164.5
3600 - 204.9 1673.6 186.2
4500 - 201.6 1678.0 186.1
9000 - 197.1 1660.4 172.6

Table 3 Adaptation and bitstream generation times

XSLT (s) Bitstream Generation (s)
#Pic. BSDL BFl. XFl. BSDL BFl. XFl.

150 0.5 0.5 60.7 0.7 0.7 16.8
301 0.7 0.7 716.1 0.8 0.7 28.5
450 0.9 1.0 - 0.8 0.9 -
601 1.1 1.2 - 1.0 1.0 -
750 1.2 1.5 - 1.1 1.1 -
900 1.5 1.7 - 1.2 1.3 -
1800 2.3 2.6 - 2.0 2.2 -
2700 2.9 3.3 - 3.4 3.2 -
3600 3.8 4.5 - 4.2 4.2 -
4500 4.4 5.1 - 5.8 5.6 -
9000 8.4 9.3 - 11.9 32.3 -

Table 3 summarizes the times needed for customiz-
ing the different BSDs and for deriving a tailored child
bitstream. The measurements make clear that the trans-
formation of XFlavor BSDs fails in this regard. As il-
lustrated by Table 4, this is due to the large size of
those BSDs: in order to allow a maximized transforma-
tion space, an XFlavor BSD has to contain all bitstream
data. As such, it does not act as an additional metadata
layer on top of the compressed bitstream (as is the case
for the BSDL and BFlavor BSDs). Note that the gen-
erated BSDs can be compressed efficiently as well (i.e.,
compression ratios of up to 98% can be achieved when
using common compression software). Finally, Table 5
gives an overview of the memory consumption of the
different tools involved. The BintoBSDm Parser, as well
as the BFlavor and XFlavor parsers, are characterized by
a constant and low memory usage. The generic BSDto-
Bin Parser shows a low and constant memory usage too
(results shown for BFlavor BSDs). The XSLT engine re-
quires an increasing amount of memory (an entire DOM
tree is needed; results shown for BFlavor BSDs). This
illustrates the necessity to pay attention to the transfor-
mation technology used in practical situations.

5 Conclusion

In this paper, several languages were discussed that pro-
vide a solution for translating the structure of a VC-1
bitstream into an XML description, and for the gener-
ation of an adapted bitstream using a transformed de-
scription. The performance measurements illustrate that
BFlavor (BSDL + XFlavor) and our extended version
of MPEG-21 BSDL offer an elegant and practical so-

Table 4 File sizes

Original Files (MB) Transformed Files (MB)
#Pic. Bitstr. BSDL BFl. XFl. BSDL BFl. XFl. Bitstr.

150 4.2 0.5 0.6 88.7 0.3 0.3 27.9 1.3
301 7.7 1.0 1.2 161.9 0.5 0.6 47.3 2.3
450 10.9 1.5 1.7 228.1 0.7 0.9 - 3.2
601 14.1 2.0 2.3 295.1 0.9 1.1 - 4.0
750 17.5 2.5 2.9 366.8 1.1 1.4 - 4.9
900 21.1 3.0 3.5 442.1 1.4 1.7 - 6.0
1800 42.1 6.0 7.0 884.2 2.7 3.4 - 12.0
2700 63.2 9.1 10.5 1326.3 4.1 5.1 - 18.0
3600 84.2 12.1 13.9 1768.5 5.4 6.8 - 24.0
4500 105.3 15.1 17.4 2210.6 6.8 8.4 - 30.0
9000 210.6 30.3 34.9 4421.1 13.6 16.9 - 60.0

Table 5 Peak system memory consumption

BSD Generation(MB) XSLT BSDtoBin
#Pic. BintoBSDr BintoBSDm BFl. XFl. (MB) (MB)

150 6.6 1.8 0.7 0.7 3.1 0.9
301 12.2 1.7 0.7 0.8 4.7 1.1
450 19.0 1.7 0.7 0.8 8.8 0.8
601 33.8 1.8 0.7 0.8 8.7 1.0
750 40.0 1.8 0.7 0.9 17.3 1.1
900 61.0 1.9 0.7 0.9 17.0 1.0
1800 65.0 1.9 0.7 0.9 41.0 1.3
2700 - 1.8 0.7 1.4 33.4 1.3
3600 - 1.9 0.7 1.6 65.4 1.2
4500 - 1.8 0.7 1.8 61.6 1.1
9000 - 1.9 0.7 1.9 123.5 1.3

lution for the description-driven customization of VC-1
bitstreams in the temporal domain.

Acknowledgement: The research as described in this

paper was funded by Ghent University, the Interdisciplinary

Institute for Broadband Technology (IBBT), the Institute for

the Promotion of Innovation by Science and Technology in

Flanders (IWT), the Fund for Scientific Research-Flanders

(FWO-Flanders), the Belgian Federal Science Policy Office

(BFSPO), and the European Union.

References

1. “Proposed SMPTE Standard for Television: VC-1 Com-
pressed Video Bitstream Format and Decoding Process,”
document 421M, SMPTE, New York, USA, August 2005.

2. S. Srinivasan, P. J. Hsu, T. Holcomb, K. Mukerjee, S. L.
Regunathan, B. Lin, J. Liang, M.-C. Lee, J. Ribas-
Corbera, “Windows Media Video 9: overview and applica-
tions,” Signal Processing: Image Communication, vol. 19,
pp. 851–875, 2004.

3. W. De Neve, D. Van Deursen, D. De Schrijver, K. De Wolf,
R. Van de Walle, “Using Bitstream Structure Descriptions
for the Exploitation of Multi-layered Temporal Scalabil-
ity in H.264/MPEG-4 AVC’s Base Specification,” Proc. of
PCM 2005, Springer-Verlag, pp. 641–652, Chejudo, 2005.

4. D. Van Deursen, W. De Neve, D. De Schrijver, R. Van de
Walle, “BFlavor: an optimized XML-based framework for
multimedia content customization,” Proceedings of PCS
2006, Accepted for publication, China, 2006.

5. D. De Schrijver, W. De Neve, K. De Wolf, R. Van de
Walle, “Generating MPEG-21 BSDL Descriptions Using
Context-Related Attributes,” Proceedings of the 7th IEEE
ISM conference, pp. 79–86, USA, 2005.

